This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2783326, IEEE Design

and Test

Safe and Efficient Deployment of
Data-Parallelisable Applications on Many-Core
Platforms: Theory and Practice

Stefanos Skalistis!, Federico Angiolini!, Alena Simalatsar’, and Giovanni De Micheli!

ntegrated Systems Laboratory (LSI), Ecole Polytechnique Fédérale de Lausanne (EPFL)
2Institute of Systems Engineering, HES-SO Valais-Wallis, Email: {firstname.lasthame} @ {epfi|hevs}.ch

Abstract—The safe and, at the same time, efficient deploy-
ment of parallelisable applications on many-core platforms is
a challenging task. Theoretical Models of Computation (MoC)
require the realistic estimation of task Worst-Case Execution
Time (WCET) to provide safe latency guarantees. Due to in-
terferences on shared resources, task WCET estimations are
often exceedingly pessimistic. In reality, though, rarely do all the
tasks execute with their WCET, thus introducing an efficiency
gap, which is of consequence in realizing safety-critical and
mixed-criticality systems. In this paper, we outline the additional
research efforts required to i) derive a safe deployment from
a MoC reducing that efficiency gap and ii) adapt at runtime
to further improve performance and still preserve safety. We
also outline the impact of the level of data-parallelisation onto
this efficiency gap and present experimental evidence of the
performance improvements from accurate WCET estimation,
level of data-parallelisation and runtime adaptation.

I. INTRODUCTION

Data-parallelisable applications [1]], often represented with
data-flow Models of Computation (MoC) [2], [3], are suit-
able for many-core architectures due to their high degree of
task and data parallelism. These MoCs can provide useful
guarantees (e.g. deadlock freedom, absence of data races),
required for safety-critical systems. Nevertheless, utilizing
them for hard real-time systems, which require completion
deadlines, in an efficient manner is challenging. Engineering
hard real-time systems based on theoretical MoCs is founded
on the a-priori knowledge of task Worst-Case Execution Time
(WCET). However, in multi-core architectures, the WCET
varies according to the deployment, as tasks interfere when si-
multaneously accessing shared resources, i.e. memories, buses
and processors. This effect is particularly apparent in data-
parallelisable applications, due to extensive resource sharing,
thus constituting a severe engineering challenge. Indeed, recent
research [4]], [5], [6] shows that WCET estimations which
account for interferences from parallel tasks can be 150% to
even 750% of the corresponding estimations in absence of
interference. As an illustrative example (see Figure [I) of the
WCET variability, consider four equivalent tasks, e.g. an image
filter applied to four different parts of an image. These tasks,
being equivalent, have the same Worst Case Computation Time
(WCCT) when executed in isolation. If the overhead per each
overlapping task is of one unit, it is clear that the WCET of

Corel -|EEENINGIIEED W weer
Core2 sl [interference
Core3

! ! " Time
1 2 3 4 5 6 7 8 9
Fig. 1: Example of varying WCET for four equivalent tasks

executed on three cores.

each task will increase and additionally will vary depending
on the schedule.

Applying MoCs, such as Synchronous Data-Flow graphs
(SDFs) [2] and Kahn Process Networks (KPNs) [3], to ef-
ficiently implement actual systems is, therefore, far from
straightforward. In this paper, we present the necessary re-
search and engineering efforts to utilize such models with-
out undermining performance. In particular we utilize our
previous works on data-parallelisable applications modelled
as a subclass of SDFs (but without being strictly limited
to that subclass) deployed on homogeneous NoC-based MP-
SoCs. Data-parallelisable applications are particularly inter-
esting since, if properly deployed, they can provide spatial
isolation thus reducing the worst-case estimation for the in-
terference. Having such an application, we first generate a
safe deployment solution using an interference-based WCET
estimation method. This method accounts for the problem of
inter-task interference and provides a tighter latency guarantee,
than would otherwise be impossible to acquire. Yet, even
such statically-tightened WCETS are over-approximations and
conservative schedules based on them result in sub-optimal
system performance. This calls for adaptation at runtime based
on the Actual Execution Time (AET), provided that safety is
still guaranteed.

Both accurate WCET estimation and runtime adaptation
are beneficial for safety-critical and mixed-criticality systems.
Accurate WCET estimation results in systems with lower
latency/higher throughput guarantees and improved power
estimations. Runtime adaptation can yield additional improve-
ments to power consumption, enabling e.g. longer operation
when battery-powered, and performance, creating timing slack
which can be exploited, in the case of mixed-criticality sys-

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2783326, IEEE Design

and Test

Unified System model
Cluster 1 |

Cluster 2

Application Model

Mapping, Scheduling,
buffer allocation

Update the schedule

Worst case computation
time (WCCT) in isolation J

“ Tighter
WCET

Fig. 2: Overview of our approach [5] to acquire a safe
deployment.

tems, by best-effort tasks.

The main contributions of this paper are i) outlining research
directions necessary to realize safe and efficient systems by
presenting an exemplar software deployment flow for many-
core systems, which guarantees that hard deadlines will be
met, while optimising the actual execution time; ii) an analysis
of the additional optimisation possible when accounting for
the degree of application data parallelism; and iii) a generic
low-overhead runtime adaptation technique which preserves
safety.

II. ACQUIRING A SAFE DEPLOYMENT

To acquire a safe deployment for a data-parallelisable ap-
plication, we utilize our previous theoretical work on safe
deployment of data-flow applications on many-core architec-
tures [4] and an interference-based WCET analysis [3]. Both
methods assume that the task WCET is composed of the
WCCT when executed in isolation (including baseline delays
to load/store data) and the delays due to interferences. This
distinction, which is rarely encountered in formal models,
is essential in achieving efficient deployment solutions and
runtime adaptation, as shown in Sections [Tl and [[V]

Using an architecure and an application model as inputs, we
acquire a safe deployment solution by performing application
i) partitioning, by balancing the computation load using the
WCCT, and ii) placement, by assigning different partitions to
compute clusters while minimising the communication delay,
which depends on the distance between the communicating
clusters (see Figure [2). Subsequently, we derive the unified
system model, which encompasses both the computation and
communication elements of the platform. Based on the worst-
case interference, we then compute pessimistic WCETs for
tasks of the unified system model, and use them to derive near-
optimal solutions for the application mapping, scheduling, and
buffer allocation, thus providing real-time guarantees. The
solutions to the aforementioned optimisation problems are
provided by an SMT solver, via sets of constraints describing
the unified system model and limitations of the target platform,
but other methods, e.g. any scheduling technique listed in [7]],
[8], [9] or state-of-the art methods for KPNs [3] or SDFs [2]],
can be used as well.

These solutions are then analysed using our WCET tight-
ening methods [5]]. Since a schedule is now available, it is
possible to exclude inter-task interference that cannot occur

Multi-core

Fig. 3: Illustration of the reference many-core architecture.

because tasks that appeared to be possibly interfering are now
known to not overlap either in time or resources. Applying
this tightening at the end of the task mapping flow breaks the
cyclic inter-dependence between deployment and interference,
providing a set of efficient deployments which preserve real-
time guarantees.

In the following subsections we briefly present the formal
models required to derive safe deployment solutions, while
referring the reader to [4]], [3]] for a complete discussion.

A. Platform Architecture Model

We consider a generalised many-core architecture as a tuple
P = (X,K,M,N) where X is the set of identical clusters
interconnected with a NoC and K, M, N are the sets of
processing cores, memory banks and NoC channels per cluster,
respectively. Each cluster has one NoC interface, connected to
a dedicated NoC router (Figure [3).

Intra-cluster data exchanges occur over the cluster shared
memory, while inter-cluster transfers are handled by the NoC.
This model is inspired by various NoC-based multi-cores, e.g.
the ones considered in [10], [6], and is generic enough to
model several platforms. For simplicity, we focus only on
data transfers within the chip and not between the chip and
main memory, Ethernet interfaces, I/O devices etc. We also
assume that the platform provides a non-polling notification
mechanism (e.g. interrupts) among cores of the same cluster,
with bounded execution time and memory accesses.

B. Application and Unified System Models

Data-parallelisable applications are frequently modeled as
SDFs [2], which provide useful properties, such as deadlock
freedom, absence of data races, confluency, buffer protection,
etc. In this model, actors exchange data via First-In-First-Out
(FIFO) channels and are iteratively fired. At every firing, cor-
responding to a task execution, the actor consumes/produces
data tokens from/to the input/output FIFOs, respectively.

We focus on a particular class of SDF called split-join
graphs [[11]], which model explicitly the parallelisation of each
actor. From a split-join graph, equivalent graphs can be devised
depending on the data- (§) and task- () parallelisation factors,
as shown in Figure f] We will always choose, from these
equivalent graphs, the ones where FIFOs are split up to the

'The focus is due to the explicit modelling of parallelisation factors and
existence of tools (StreamExplorer) for these models.

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2783326, IEEE Design

and Test

(z,5) (2. %) @

(b) A task model for
parallelisation

(a) Reference application task-

(c) A task model for
parallelisation ¢

data-(d) A task model with parallelisa-
tion T > &

Fig. 4: Various task models for the reference produce-
process-consume application with process having task-/data-
parallelisation factors of 7 and &, respectively.

maximum &, i.e the ones corresponding to Figures The
reason is that splitting the FIFOs to the maximum possible
degree can provide spatial isolation, thus has a significant
impact on the WCET estimation as explained in Section
and by extension on the efficiency of the solution.

An application with data dependencies is modelled as an
SDF directed acyclic grap G = (U,E), with U being a set of
computation actors and £ a set of dependencies among them.
Actors communicate via bounded FIFOs, one for each edge
e € & of the graph. An application model is an annotated SDF
graph A = (U, E,d, o), where the delay function d describes
the WCCT of each firing of actor u in absence of interferences,
while the size function o captures the traffic volume (in words)
of each edge e.

Since NoC transfer times vary according to the distance
of the communicating clusters, to faithfully assess execution
times on a target NoC-based platform, the placement function
p: U — X has to be solved [5], [9]. Only then it is possible
to model all data transfers with communication tasks, which
encapsulate the arbitration, transfer and memory release stages
of said communication. This leads to the unified system model,
modelled as an annotated SDF graph S = (U', &', d’,o") [4],
which describes the execution of the application A on a plat-
form P accounting for both computation and communication.

C. Generic Interference Model and Safe Deployments

We model data transfers in a very general way as a
sequence of word-by-word requests. The parallel firing of
actors, henceforth fasks, introduces mutual interferences when
requests share resources. We assume intra-cluster interference,
i.e. where requests suffer arbitration delays, to occur at two
points: i) at an intra-cluster bus, ii) at an intra-cluster memory
bank. Inter-cluster transfers on the other hand can also run into

2This restriction is due to the deployment tool used in Section

interferences when iii) a remote transfer task collides with a
memory access of an intra-cluster task, or iv) two transfer
tasks compete for the same NoC router.

We assume, as in previous work [5], that the WCET of
transfer tasks is bounded by guaranteed services offered by the
underlying platform, like in the Kalray MPPA-256 chip [10],
but this assumption can be lifted if the routing of NoC flows
is known. Given a unified system model S = (U,E&,d, o)
using our methods [4], [S] and existing toolsﬂ we acquire
a safe deployment (1 g, tiar, S, dwe), Where the task mapping
function (1 g) maps tasks to platform cores or NoC channels,
the memory mapping function (u,7) associates graph FIFOs
to physical memory banks, the scheduling function (s) as-
sociates a start time to each task, and the worst-case delay
function (dy,) provides a deployment-dependent WCET. We
then transform the unified system model S, as in [L1], to an
annotated task graph TM = (V, E, dy., o) called task model.
In this transformation, V is the set of tasks and E are the data-
dependencies between the tasks augmented with additional
scheduling dependencies such that the FIFOs remain protected.

This is a safe deployment, in the sense that no task violates
any deadlines and the total latency is guaranteed, since the
WCET was originally over-approximated and then safely
tightened, while maintaining buffer protection (see proofs in

(4], (3.

III. DATA PARALLELISATION AND IMPACT ON
INTERFERENCE

As described above, a safe deployment for an application
A can be identified. It is now important to outline the impact
of inter-task interference on such a deployment, particularly in
accordance with the data-parallelisation factor d. If § is known
for every task of application A, it is possible to acquire more
efficient, and still safe, solutions by estimating the interference
on different task models for different values of 4.

To do so, we first report the WCET estimations for a ref-
erence application and compare them with estimations which
disregard 4. In Section [IV| we will evaluate such effects on the
actual execution of the reference application.

As a reference application we consider the producer-
process-consumer paradigm (see Figure ic) where process has
a data-parallelisation factor up to twice the number of cores,
i.e. § = 32. At all times there are 32 tasks (but only 20 FIFOs)
which process 32 data chunks of 1%k B, produced/consumed by
the corresponding tasks. For illustration purposes, as reference
architecture we consider a simple multi-core, i.e. one cluster
with K cores organised in pairs, and the same number of
memory banks (M = K). We chose such a simplistic
application and architecture as it better illustrates the impact of
data-parallelisation than more complicated setups. Results for
a NoC-based MPSoC and real-life applications can be found
in [4].

As illustrated in Figure 5} by not considering data paral-
lelisation, the estimation of the WCET of the process task

3StreamExplorer from Verimag, available at:
http://www-verimag.imag.fr/~poplavko/streamExplorer.html

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www-verimag.imag.fr/~poplavko/streamExplorer.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2783326, IEEE Design

and Test
4
wem Improved WCET — — WCET (with §=1)

0000 [00] (11) [10] (00) [00] (11) [10] (0O)
%\ 9500 Core2 Core2
E‘ o Status: 00 Status: 00 (00](01) 1] (00)
g 9000 16% Corel Corel

Status: 00 Status: 01

é 8500 | | | I Time | | T T Time
2 a000 1 2 3 4 1 2 3 4
£ 7500 (a) Initial state of the system (b) After v; finishes at ¢t = 1
|

7000
Data-parallelisation factor &

Fig. 5: Latency reduction due to accurate WCET estima-
tion accounting for the data-parallelisation factor d. Original
estimation (dashed line) and corresponding estimation for
different values of 6 = {1,..., K} for an architecture with
K =16 cores at 400 MHz.

is constant at the value for § = 1, resulting in a constant
estimated total application latency.

However, as 4 increases, it is possible to distribute FIFOs
across more memory banks, thus reducing bus and memory
interference. Thus, at each step (except 6 = 32), with an
interference-aware mapping, the amount of interference can be
approximately halved, proportionally reducing the total latency
and approaching the WCCT. At § = 32, since the task count
exceeds the memory bank count, the interference cannot be
lowered anymore, and the increased task count brings a small
constant overhead, therefore the total latency increases slightly.

Overall, we show that by taking into account the data-
parallelisation of the application we were able to tighten the
guaranteed latency up to 16%, excluding 100% of the potential
interferences.

IV. SAFE RUNTIME ADAPTATION

In Section [l we discussed how to acquire a safe and
tight deployment (ug, tar, S, dwe) for the system model
S=V,E,d,0) (and the corresponding task model TM =
(V, E,dye,0)) by excluding sources of interference and ex-
ploiting data parallelism. These static WCET estimations
d, are still over-approximated, since worst-case interference
rarely happens in reality. Thus, a timed execution of the de-
ployment solution according to schedule function s guarantees
safety, but is likely inefficient.

To improve the system performance, we introduce a runtime
optimisation based on the actual execution times (AET) of
tasks. This runtime optimisation resembles self-timed schedul-
ing, but guarantees by construction that no new interference
will be introduced, thus preserving safety. This is achieved
by transforming the task model T'M into a scheduled task
model STM = (V,E U Eg,dy,0) by enforcing additional
scheduling dependencies Eg that prevent new interference
from happening on any possible executions. Each task v
is forced to depend on the previously finished tasks {v'}
according to the scheduling s, thus maintaining the partial
order defined by the schedule s. Intuitively, even if tasks are
rescheduled to earlier times, because the AET outperformed
the WCET, these dependencies prevent additional overlaps by
separating their execution in time [4].

0] (11) (10 (00) (00l (11) L0l (00)

Core2 Core2
Statust 1001 11 (00) st 00 ooy1) q11] (00)
Corel Corel
Status: 00 Status: 00

T T T T T T T ™

1 2 3 4T|me 1 2 3 4T|me
(c) At t=1.5, after v finished, | (d) At t=1.5, monitors resched-
monitors notifies monitor; | ules vy

which reschedules v3

Fig. 6: Example of monitor operation for four tasks on two
cores. For each task the ready mask is in square brackets. The
dependency vector is in parentheses and is also illustrated with
arrows.

To maximize the performance gains, our approach involves
light-weight distributed monitors, one on each core, which
are executed every time a task v’ finishes, and dynamically
adjust the system scheduling. Introducing such monitors can
interfere with running tasks and alter their WCET. Therefore,
for safety and performance reason such monitors should be be
rather simple in order to preserve safety and not undermine
performance.

A. Monitor Operation

Since a monitor is invoked every time a task completes,
an efficient implementation is imperative. Further, to preserve
safety, the monitors must be implemented to have bounded
i) execution times and ii) potentially-interfering memory re-
quests. These overheads must be added upfront to the WCCT
of every task.

The main purpose of monitors is to yield control to the next
task when it is ready to execute. If not, a monitor must stall
until all dependencies are met. In our implementation, each
task holds bit vectors for its outgoing (dependency vector) and
incoming (ready mask) edges. Each bit represents a core of the
platform P, on which this edge ends/originates, and is derived
from the dependency relations £ U Eg of the scheduled task
model and the task mapping . To facilitate the explanation,
we consider that these vectors always have the same size
| K| « | X| bits, although for tasks that only have intra-cluster
dependencies, | K| bits are sufficient.

Each monitor also holds a status bit vector, of the same size
and initialized at O, tracking from which cores a dependency
has been met. Each monitor can write into the other monitors’
status vectors, either locally or over the NoC.

After a task v on core k completes, the k-th monitor updates
the status of all the cores on the dependency vector of v/,
setting their k-th bit. Subsequently, it notifies (e.g. with an
interrupt) the monitors of these cores, in case they are awaiting
for the dependencies of their next task to be met. Finally, the

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2783326, IEEE Design

and Test

monitor tries to start the next task of the local core k; if not
ready, it sets the core in idle mode. This process is illustrated
in Figures [6a] [6b] and summarised in Algorithm [I]

Algorithm 1: First invocation of a monitor on core k

/* Notifies other cores that V' has
finished on core k and executes the
next task V when it becomes ready */
input: Task V’, status array of all cores;

(status]é][j]: the j-th status bit of the i-th core)
1 Function invokeMonitor (V),status[][]):
2 V < Vv.next ;
3 dependencies « v'.dependencies ;
4 for i < 1 to | K|« |X| do
5 if dependencies|i] then
6 status[i[k] < 1 ;
7 L notifyCore (7) ;

8 startTaskWhenReady (v, status[k]);

To start the next task, the monitor checks if all the required
dependencies are met. If not, it enables incoming notifications
(e.g. interrupts) and waits for a notification to recheck. When
the task is ready, the monitor disables notifications, and
reconfigures its local status to 0 (see Figures [6d and
Algorithm [2).

Algorithm 2: Wait until task is ready

/+ Executes task V when it is ready */
input: Task v, the status of this core
1 Function startTaskWhenReady (v,status) :

2 readyMask «+ v.readyMask ;

3 while (status & readyMask) # readyMask do
4 enableNotifications () ;

5 L waitNotify () ;

6 disableNotifications () ;

7 status «+ 0 ;

8 V.execute () ;

B. Runtime Performance

Expanding the results of Section [[ll we evaluate our run-
time optimisation with the produce-process-consume reference
application in order to outline the impact of interference as
data-parallelisation increases in actual executions. In Figure [/}
we compare the guaranteed latency, acquired in Section [[TI]
with the observed latency (maximum and average) after 100
iterations of the application executed on a Kalray MPPA-256
chip.

We can observe that data parallelisation, as expected, allows
for more parallel FIFO mappings onto memory banks, which
improves both the guaranteed (tightened WCET) and observed
latency. The guaranteed latency decreases proportionally to 4.
The observed latency rapidly decreases for ¢ values between 1
and 2 and then slightly decreases up to 6 = 4, when it starts to
slightly increase. This difference is explained by the fact that

12000 = Avg. Observed
Max. Observed

~e—|mproved WCET

9819.963
10000

9213.755
16% { 8607.547 8394.555

8263.483 8266.683
8000 6717.304

. -30%
6000 5537.p4
4000
2000
0
1 32

Fig. 7: Comparison of the observed latency vs the guaranteed
latency of the reference application for different values of ¢
deployed on 16 cores at 400MHz.

5551.174 5485.179 5487.409 5511.746

2 4 8 16

Data-parallelisation factor &

Latency (in KCycles)

the WCET analysis expects, for lower values of J, that more
memory requests will experience the worst-case delay. In fact,
not all memory requests are delayed and not with the worst-
case delays. The slight increase, for § > 4, of observed latency
is due to higher number of tasks and thus higher monitoring
overhead. The average and maximum observed latencies are
quite close, since all tasks need to perform faster on average,
because the consumer task waits for all the data.

Overall, by considering the degree of data parallelisation
of the application, we were able to improve the guaranteed
latency by 16%. By safely adapting execution, we could
compress the runtime by an additional 30%, creating slack
that could be used for power-saving modes or the execution
of lower-criticality tasks (at the end of execution or using
interference monitors [6]]). In general, we demonstrate that an
application mapping flow that is aware of, and appropriately
exploits, application data parallelism can exclude potential
interferences, leading to tighter and more accurate WCET es-
timations. The gains from our runtime rescheduling technique
also increase when accounting for the data-parallelisation
factor of the application.

V. DISCUSSION

While many formal models for safety-critical or mixed-
criticality systems exist, most of them do not explicitly account
for interferences. Instead either the a-priori knowledge of
WCET is assumed, or interference is largely approximated
or even safe-guarded using either specialized hardware or
sophisticated software and scheduling techniques. The latter is
especially true for mixed-criticality systems in order to avoid
interference from lower criticality tasks, and for some safety-
critical approaches as well.

As outlined in [4], [3], [6] and in Section [[TI} the amount of
interference varies significantly and affects guaranteed latency
proportionally, but not linearly, especially in the case of
data-parallelisable applications. As a result, many theoretical
approaches result in inefficient implementations of real-life
systems. For example, the authors in [8] present an elaborate
scheduling and response time analysis for mixed-criticality
systems on many-core platforms, which de-facto prevents
interference from lower criticality tasks and does not exploit
the possible parallelisation of the applications. Similar con-

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2017.2783326, IEEE Design

and Test

clusions can be drawn for the state-of-the-art mixed-criticality
approaches as previously noted [7]].

On the other end of the spectrum, for safety-critical and
mixed-criticality systems, there are approaches that focus
on a systems perspective. For example the authors of [6],
[12] provide sound scheduling and monitoring techniques for
the execution of tasks under the presence of interference.
Specifically both propose monitoring techniques to safe-guard
the amount of interference a task experiences. Nevertheless,
such techniques, operating at a low level, cannot optimise
according to the parallelisation factor and can introduce non-
negligible interference and overhead in the target system by
the constant monitoring of resource usage.

Finally, model-based techniques [9], [11] can be fitting for
the problem as they can explicitly model parallelism and
provide safe deployments and are suitable for safe runtime
adaptation. While they can achieve good runtime performance,
the fact that do not model the interference on the underlying ar-
chitecture results in pessimistic guarantees and under-utilized
systems.

VI. CONCLUSIONS

In this paper, we presented how theoretical models can be
utilised to provide safe and efficient solutions to the problem of
deploying parallel applications on many-cores. In this paper,
we bridge the gap between formal analysis and practical
aspects of systems engineering.

We consider that to achieve efficiency it is important to 1)
accurately estimate interference delays, 2) consider possible
data-parallelisation, as it affects interference, and 3) adapt
at runtime with minimal overhead, to preserve safety and
efficiency. Our methods improve guaranteed latency by 16%,
due to accurate interference estimation, and an additional 30%
at runtime with a combined gain of 46% on the reference
application. Similar results have been obtained for real-life
applications in our previous works [4], [3].

REFERENCES

[1] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in
Proceedings of the 19th international conference on Parallel architec-
tures and compilation techniques, PACT ’10, (New York, NY, USA),
pp. 365-376, ACM, 2010.

[2] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.

[3] K. Gilles, “The semantics of a simple language for parallel program-
ming,” In Information Processing, vol. 74, pp. 471-475, 1974.

[4] S. Skalistis and A. Simalatsar, “Near-optimal deployment of dataflow
applications on many-core platforms with real-time guarantees,” in
Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2017, pp. 752-757, 1IEEE, European Design and Automation
Association, 2017.

[5]1 S. Skalistis and A. Simalatsar, “Worst-case execution time analysis
for many-core architectures with NoC,” in International Conference on
Formal Modeling and Analysis of Timed Systems, pp. 211-227, Springer,
2016.

[6] A. Kritikakou, C. Rochange, M. Faugere, C. Pagetti, M. Roy, S. Girbal,
and D. G. Pérez, “Distributed run-time WCET controller for concurrent
critical tasks in mixed-critical systems,” in Proceedings of the 22nd
International Conference on Real-Time Networks and Systems, p. 139,
ACM, 2014.

[71 A.Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, 2013 (Ninth version:
Jan 2017).

[8] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D.
de Dinechin, “Mixed-criticality scheduling on cluster-based manycores
with shared communication and storage resources,” Real-Time Systems,
pp. 1-51, 2015.

[9] P. Tendulkar, P. Poplavko, I. Galanommatis, and O. Maler, “Many-core
scheduling of data parallel applications using SMT solvers,” in Digital
System Design (DSD), 2014 17th Euromicro Conference on, IEEE, 2014.

[10] B. D. de Dinechin, D. van Amstel, M. Poulhies, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in De-
sign, Automation and Test in Europe Conference and Exhibition (DATE),
2014, pp. 1-6, IEEE, European Design and Automation Association,
2014.

[11] P. Tendulkar, P. Poplavko, and O. Maler, “Symmetry breaking for multi-
criteria mapping and scheduling on multicores,” in Formal Modeling and
Analysis of Timed Systems, pp. 228-242, Springer, 2013.

[12] J. Nowotsch, M. Paulitsch, D. Biihler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive WCET analysis lever-
aging runtime resource capacity enforcement,” in Real-Time Systems
(ECRTS), 2014 26th Euromicro Conference on, pp. 109-118, IEEE,
2014.

Stefanos Skalistis received the Ph.D. degree (2017)
from the Swiss Federal Polytechnical School of
Lausanne (EPFL), Switzerland. Previously, he has
worked in research positions for 2.5 years in AUTh
and Coventry University and during his Ph.D. stud-
ies in the Rigorourous System Design (RiSD) and
Integrated Systems Laboratory (LSI) he focused on
real-time systems, correctness-by-construction tech-
niques, scheduling and optimisation.

Federico Angiolini received the Ph.D. degree (2008)
from the Department of Electronics and Computer
Science from University of Bologna, Italy. His
initial research interests included multiprocessor-
embedded systems and networks-on-chip, resulting
in co-founding the iNoCs Structured Interconnects.
Since 2013, he is working on medical imaging
and drug delivery platforms at the Swiss Federal
Polytechnical School of Lausanne (EPFL).

Alena Simalatsar is a scientific collaborator at
HES-SO Valais-Wallis. Previously, she spent six
years at EPFL, as a scientific collaborator, conduct-
ing research on safety analysis of embedded systems
in multiple projects. She received her PhD in Com-
puter Science and Telecommunication Technologies
(University of Trento, Italy) in 2009, focusing on
system-level analysis methodologies for embedded
systems.

Giovanni De Micheli is a professor and director
of the Institute of Electrical Engineering at EPFL
and the leader of the Nano-Tera.ch program. De
Micheli is a recipient of the IEEE Computer Society
Harry Goode Award and the European Design and
Automation Association (EDAA) Lifetime Achieve-
ment Award. He is a member of Academia Europaea
and an International Honorary member of the Amer-
ican Academy of Arts and Sciences.

2168-2356 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

